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Can a typographical error lead to years of 
extra prison time?



Glenn Rodriguez was denied parole because 
of a miscalculated “COMPAS” score.

How accurate is COMPAS? 

Can a typographical error lead to years of 
extra prison time?



COMPAS vs. CORELS

CORELS:  (Certifiably Optimal RulE ListS, with 
Elaine Angelino, Nicholas Larus-Stone, Daniel 
Alabi, and Margo Seltzer, KDD 2017 & JMLR 2018)

Here is the machine learning model:

COMPAS: (Correctional 
Offender Management Profiling 

for Alternative Sanctions) 

If age=19-20 and sex=male, then predict arrest
else if age=21-22 and priors=2-3 then predict arrest
else if priors >3 then predict arrest
else predict no arrest



Prediction of re-arrest within 2 years



Prediction of re-arrest within 2 years

If age=19-20 and sex=male, then predict arrest
else if age=21-22 and priors=2-3 then predict arrest
else if priors >3 then predict arrest
else predict no arrest

* exemplifies a larger phenonenon



Problem spectrum

age   45
congestive heart failure?   yes
takes  aspirin
smoking?  no
gender   M
exercise?  yes
allergies?  no
number of past strokes   2
diabetes? yes

Tabular: All features are interpretable
- many problems in criminal justice, healthcare, 

social sciences, equipment reliability & 
maintenance, etc. 

- features include counts, categorical data

Raw: Features are individually uninterpretable
- pixels/voxels, words, a bit of a sound wave



Neural networks
With minor pre-processing, all 
methods have similar performance

Very sparse models (trees, scoring systems)
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Optimal Sparse Decision Trees
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Wrong split? Too bad!

Optimal Sparse Decision Trees
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Optimal sparse decision trees is NP hard. 
Factorial in the number of variables.
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Splitting conditions

Greedy construction: both the splitting 
and pruning conditions are based on 
statistical testing.
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Greedy construction: both the splitting 
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Automatic Interaction Detection (AID) (Morgan & Sonquist, 1963) regression trees 

THeta Automatic Interaction Detection (THAID) (Messenger & Mandell, 1972), classification trees

CHi-squared Automatic Interaction Detector (CHAID) (Kass, 1980) 

Classification And Regression Trees (CART) (Breiman et al., 1984)

ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993)

Ensemble methods: Random Forest, 
Boosted Decision Trees, BART

Global tree optimization, mid-1990’s

1994

Other problems:
longitudinal data, survival curves: 
Segal (1992), Simonoff (several papers) 

Improvements in splitting criteria for classification and regression
Hypothesis tests, de-biasing (Strobl), missing variables

Tutorials (Murthy 1998, Loh 2014, L. Rokach & O. Maimon 2004 - beware) 

Bennett, Street, Mangasarian
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Ensemble methods: Random Forest, 
Boosted Decision Trees, BART

Global tree optimization, mid-1990’s

Other problems:
longitudinal data, survival curves: 
Segal (1992), Simonoff (several papers) 

Improvements in splitting criteria for classification and regression
Hypothesis tests, de-biasing (Strobl), missing variables

Bennett, Street, Mangasarian

What I hope:
“Trees are sometimes 10% worse than ensembles.”
“We can’t tell how close to optimality our trees are.”
“We need new splitting criteria for each objective.” 

“Trees sometimes choose irrelevant variables.”

Fully optimal decision trees. User picks objective: 

Regularize with sparsity for interpretability.

classification accuracy, weighted accuracy, F-
score, AUC, partial AUC, precision, recall, etc.

Adapt to handle missing data / biases, etc.

Adapt to other problems
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Fully optimal decision trees. User picks objective: 

Regularize with sparsity for interpretability.

classification accuracy, weighted accuracy, F-
score, AUC, partial AUC, precision, recall, etc.

Approaches:
- Genetic programming (e.g., Fan & Gray, 2005, Janikow & Malatkar, 2011), or neural networks

- no optimality gap
- For classification data that is able to be perfectly separated: SAT solvers (Narodytska et al., 2018, Janota 2020) 

- Mathematical programming solvers (Bennett mid-1990’s, Blanquero et al., 2018, Menickelly et al., 2018; Vilas 
Boas et al., 2019, Verwer & Zhang, BinOCT 2019) 

- Dynamic programming / Branch and Bound 
- Garofalakis et al., DTC, 2003 (less relevant since it just finds subtrees of greedy-grown trees)
- Nijssen & Fromont, DL8, 2007, Nijssen et al., DL8.5, 2020
- Angelino et al, CORELS, 2018, Hu et al., OSDT 2019, Lin et al., GOSDT, 2020

with Jimmy Lin, Chudi Zhong, Diane Hu, Margo Seltzer

(Blanquero et al, 2020, Zantedeschi et al, 2020, S. Aghaei
et al, 2020, G. Aglin et al., 2020, E. Demirovic et al. 2020)



An example of an optimal tree on the Broward 
County Florida re-arrest data

Misclassification error Sparsity

min  R(tree,{(xi, yi)}i) where
tree

R(tree,{(xi, yi)}i) = !
"
∑1
i=1

n

[tree(xi) ≠ yi]
+ C (# leaves in tree)



Start with the full dataset and a naive label

Dynamic programming / Branch and Bound 



Split it into subsets using each feature

Dynamic programming / Branch and Bound 

Start with the full dataset and a naive label



Split it into subsets using each feature

Keep splitting (if permitted)

Can’t 
split 

anymore

Dynamic programming / Branch and Bound 

Start with the full dataset and a naive label



Split it into subsets using each feature

Keep splitting (if permitted)

Consolidate any duplication found. Identical 
subproblems

Dynamic programming / Branch and Bound 

Start with the full dataset and a naive label

Can’t 
split 

anymore



Dynamic programming / Branch and Bound 



The solution to each 
subproblem yields the best 
feature to split on. 

Dynamic programming / Branch and Bound 



The optimal solution is found after all 
subproblems are “completed” 

Dynamic programming / Branch and Bound 

The solution to each 
subproblem yields the best 
feature to split on. 

Some subproblems can be proven 
to yield non-optimal solutions



Dynamic programming / Branch and Bound 

Theorems show that some partial trees can never be extended to form optimal trees.

Analytical Bounds Reduce the Search Space
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Dynamic programming / Branch and Bound 

Theorems show that some partial trees can never be extended to form optimal trees.

Analytical Bounds Reduce the Search Space
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lossleaf 1 = 8 lossleaf 4 = 15

R(tree) ≥ b(treefixed)

Say my current best is a tree with loss Rbestsofar =      12 + C(3)  1
𝑛
#

< b(treefixed) ≤ R(tree)

This tree, and any of its children, will never be as good as current best. 

Hierarchical Objective Lower Bound
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R(tree) ≥ b(treefixed)

Rbestsofar< b(treefixed) ≤ R(tree)

Hierarchical Objective Lower Bound

then this tree, and its children, are all suboptimal. 

If
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lossleaf 1 = 8 lossleaf 4 = 15

R(tree) ≥ b(treefixed)

< b(treefixed) + C ≤ R (our tree with at least one child)

When we add even one child to our tree, it will be worse than current best. 

Hierarchical Objective Lower Bound with Lookahead

b(treefixed) < Rbestsofar

ok… but if…

+ C+ C
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lossleaf 1 = 8 lossleaf 4 = 15

< b(treefixed) + C

all its child trees are suboptimal.

Hierarchical Objective Lower Bound with Lookahead

RbestsofarIf then
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Leaf Bound

Max # leaves of any optimal child tree

< # leaves(tree) + Rbestsofar − b(tree)
!

.
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Equivalence Points Bound

Equivalent points with differing labels cannot all be classified correctly. 
The minority in each equivalence group must be misclassified.

x16 = x73 = x83 = x71 = x23
y16 = y73 = 1 and y83 = y71 = y23= -1
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Incremental Progress Bound(s)

Each split must provide a reduction in loss of at least C. 



Now for the computational speedups
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rain & construction 
[1000010001001110000………………………0]
rain & no construction
[0110001000000000110………………………1]
no rain & rush hour & construction 
[0001000100000001000………………………0]
no rain & rush hour & no construction & Friday 
[0000100000000000001………………………0]
no rain & rush hour & no construction & no Friday
[0000000010000000000………………………0]
no rain & no rush hour 
[0000000000011000000………………………0]

Represent each subproblem by its contents.

Bitvector representation makes computation fast.



Permutation map: Discover identical trees already evaluated
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Dynamic programming

Strong analytical bounds

Representation of each subproblem

Fast bit-vector computation

Consolidation of repeated subproblems 

Permutation map

GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

Speed



• Can optimize any loss function monotonically increasing in FP and FN (Balanced 
accuracy, weighted accuracy, F-1, precision, …)

• Can optimize rank statistics (AUC and partial area under the ROC convex hull)

R(tree, data)  = loss(FP, FN) + 𝐶 (# leaves)

GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)



R(tree, data)  = loss(FP, FN) + 𝐶 (# leaves)

Main experimental results:
- Similar classification error to black box methods. 
- For custom losses, much better loss values than greedy decision trees. 
- Sparser than all heuristic methods
- Orders of magnitude faster than the next best method.

GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

• Can optimize any loss function monotonically increasing in FP and FN (Balanced 
accuracy, weighted accuracy, F-1, precision, …)

• Can optimize rank statistics (AUC and partial area under the ROC convex hull)



Scalability

Optimal but 
not scalable

Scalable
+

Optimal

Note: BinOCT too slow to include.
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not optimal

Improvements in 
orders of magnitude 
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Flexibility to use different objectives

Some trees from FourClass



Summary
Modern decision tree methods are not your old CART.

Thanks!

Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, Margo Seltzer
Generalized and Scalable Optimal Sparse Decision Trees. ICML, 2020. 

Code: https://github.com/Jimmy-Lin/GeneralizedOptimalSparseDecisionTrees

CART GOSDT

https://arxiv.org/abs/2006.08690
https://github.com/Jimmy-Lin/GeneralizedOptimalSparseDecisionTrees

