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Can a typographical error lead to years of
extra prison time?



Can a typographical error lead to years of

€he New Pork imes extra prison time?

When a Computer

Program Keeps You in Jail

I Glenn Rodriguez was denied parole because

of a miscalculated “COMPAS” score.

/

June 13, 2017

How accurate is COMPAS?




COMPAS vs. CORELS

71

COMPAS: (Correctional

\

Offender Management Profiling

for Alternative Sanctions)

CORELS: (Certifiably Optimal RulE ListS, with
Elaine Angelino, Nicholas Larus-Stone, Daniel
Alabi, and Margo Seltzer, KDD 2017 & JMLR 2018)

Here 1s the machine learning model.:

If age=19-20 and sex=male, then predict arrest

else if age=21-22 and priors=2-3 then predict arrest
else if priors >3 then predict arrest

else predict no arrest




Prediction of re-arrest within 2 years
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Prediction of re-arrest within 2 years
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.’ If age=19-20 and sex=male, then predict arrest

else if age=21-22 and priors=2-3 then predict arrest
% exempllfies a larger phenonenon . else lfprlors >3 then predlct arrest

else predict no arrest




Problem spectrum

The Rashomon effect occurs when many different explanations exist for the same phe-
nomenon. In machine learning, Leo Breiman used this term to characterize problems where
many accurate-but-different models exist to describe the same dmn In lhu work, we uud)
how the Rashomon dl oct nin,

and test y

e ¢
n problem—and study its prop and the types o uld :

pr('aon! the Rulwmnn ratio as a new measure related to sim, i
age 4 5 is the ratio of the volume of the set of accurate models to the volume of the hypothesis
space; the Rashomon ratio is different from standard complexity measures from statisti-
cal learming theory. For a hierarchy of hypo ll-u;mn-«l) Rashomon ratio can help

Congestive heart faﬂure? yes modelers to navigate the trade.off between simpliity and accuracy. In particular, we find

empirically that a plot of empirical risk vs. Rashomon ratio forms a characteristic I'-shaped

Rashomon curve, whose elbow seems to l)c a reliable model selection criterion. When the

takes aspirin o b St s e S o s ot
smoking? no o |
gender M

exercise? yes

allergies? no

number of past strokes 2
diabetes? yes

Tabular: All features are interpretable

- many problems in criminal justice, healthcare, RaW: Features are individually uninterpretable

social sciences, equipment reliability & - pixels/voxels, words, a bit of a sound wave
maintenance, €tc.

- features include counts, categorical data



Problem spectrum

Very sparse models (trees, scoring systems)

Neural networks
With minor pre-processing, all
methods have similar performance

Tabular: Al features are interpretable

- many problems in criminal justice, healthcare, RaW: Features are individually uninterpretable
social sciences, equipment reliability &

maintenance, etc.
- features include counts, categorical data

- pixels/voxels, words, a bit of a sound wave



Problem spectrum

The Rashomon effect occurs when many different explanations exist for the same phe-

nomenon. In machine learning, Leo Breiman used this term to characterize problems where

many accurate-but-different models exist to describe the same data. In this work, we study

how the Rashomon effect can be useful for understanding the relationship between training

- and test , and the ibility that simple-y curate models exist for many
; problems. We consider the Rashomon set—the set of almost-equally-accurate models for

) a given problem—and study its properties and the types of models it could contain. We

iy present the Rashomon ratio as a new measure related to simplicity of model classes, which

age 4 5 i is the ratio of the volume of the set of accurate models to the volume of the hypothesis
space; the Rashomon ratio is different from standard complexity measures from statisti-

cal learming theory. For a hicrarchy of hypothesis spaces, the Rashomon ratio can help

congestive heart failure? yes b e et
takes aspirin | e e e e b e o e W
smoking? no

gender M
exercise? yes
allergies? no
number of past strokes 2
diabetes? yes

Rashomon set is large, models that are accurate—but that also have various other useful
properties—can often be obtained. These models might obey various constraints such as
interpretability. fairness. or monotonicity.

Tabular: All features are interpretable

- many problems in criminal justice, healthcare, fj'fi RaW: Features are individually uninterpretable
social sciences, equipment reliability & - pixels/voxels, words, a bit of a sound wave

maintenance, etc. "
- features include counts, categorical data
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Optimal Sparse Decision Trees

rain?
construction? rush hour?
N m
traffic  no traffic construction? no traffic
LN
traffic Friday?
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no traffic  traffic



Optimal Sparse Decision Trees

m Wrong split? Too bad!

construction? rush hour?
N m
traffic  no traffic construction? no traffic
LN
traffic Friday?

LN

no traffic  traffic



rain?

/\N\

construction? rush hour?
y\T{ y\w\
traffic  no traffic construction? no traffic
N
traffic Friday?
LN
Optimal sparse decision trees is NP hard. no traffic traffic

Factorial in the number of variables.



Greedy construction: both the splitting
and pruning conditions are based on

statistical testing

rain?

/\N\

construction? rush hour? —

V\T{ Friday?

1day?
traffic  no traffic hohday.
construction?

—

Splitting conditions



Greedy construction: both the splitting
and pruning conditions are based on
statistical testing.

rain?
/\
Pruning conditions construction? rush hour?
M
Friday? no traffic construction? no traffic
W N
no traffic  traffic traffic Friday?

LN

no traffic  traffic



Automatic Interaction Detection (AID) (Morgan & Sonquist, 1963) regression trees

v

THeta Automatic Interaction Detection (THAID) (Messenger & Mandell, 1972), classification trees

A 4

CHi-squared Automatic Interaction Detector (CHAID) (Kass, 1980)

\ 4

Classification And Regression Trees (CART) (Breiman et al., 1984)

y

ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993)

/\

Other problems:
longitudinal data, survival curves:
Global tree optimization, mid-1990’s Segal (1992), Simonoff (several papers)
Bennett, Street, Mangasarian , - — e L .
Improvements in splitting criteria for classification and regression

Global Tree Optimization: Hypothesis tests, de-biasing (Strobl), missing variables

A Non-greedy Decision Tree Algorithm
Tutorials (Murthy 1998, Loh 2014, L. Rokach & O. Maimon 2004 - beware)

Kristin P. Bennett
1994 Email 1)(‘Illll'k"l])i.l'llll
Department of Mathematical Sciences
Rensselaer Polytechnic Institute

Iroy, NY 12180 *
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Other problems:
longitudinal data, survival curves:

Global tree optimization, mid-1990’s Segal (1992), Simonoff (several papers)

Bennett, Street, Mangasarian ) o o L )
Improvements in splitting criteria for classification and regression

Hypothesis tests, de-biasing (Strobl), missing variables
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Other problems:
longitudinal data, survival curves:

Global tree optimization, mid-1990°’s Segal (1992), Simonoff (several papers)
Bennett, Street, Mangasarian

Improvements in splitting criteria for classification and yegression
Hypothesis tests, de-biasing (Strobl), missing variable

What I hope: “Trees sometimes choose irrelevant variables.”
“Trees are sometimes 10% worse than ensemblgs.
Fully optimal decision trees. User picks objective: “We can’t tell how close to optimality our treeg are.”
“We need new splitting criteria for each objeftive.”

classification accuracy, weighted accuracy, F-
score, AUC, partial AUC, precision, recall, etc.

Regularize with sparsity for interpretability.

1\
~—

y

/|

Adapt to handle missing data / biases, etc.

~

Adapt to other problems




Fully optimal decision trees. User picks objective:

classification accuracy, weighted accuracy, F-
score, AUC, partial AUC, precision, recall, etc.

Regularize with sparsity for interpretability.

- J




Fully optimal decision trees. User picks objective:

classification accuracy, weighted accuracy, F-

score, AUC, partial AUC, precision, recall, etc.
(Blanquero et al, 2020, Zantedeschi et al, 2020, S. Aghaei

KRegularize with sparsity for interpretability. ) et al, 2020, G. Aglin et al., 2020, E. Demirovic et al. 2020)

Approaches:
- Genetic programming (e.g., Fan & Gray, 2005, Janikow & Malatkar, 2011), or neural networks
- no optimality gap
- For classification data that 1s able to be perfectly separated: SAT solvers (Narodytska et al., 2018, Janota 2020)

- Mathematical programming solvers (Bennett mid-1990’s, Blanquero et al., 2018, Menickelly et al., 2018; Vilas
Boas et al., 2019, Verwer & Zhang, BinOCT 2019)

- Dynamic programming / Branch and Bound

- Garofalakis et al., DTC, 2003 (less relevant since it just finds subtrees of greedy-grown trees)
- Nijssen & Fromont, DLS8, 2007, Nijssen et al., DL.8.5, 2020
- Angelino et al, CORELS, 2018, Hu et al., OSDT 2019, Lin et al., GOSDT, 2020

with Jimmy Lin, Chudi Zhong, Diane Hu, Margo Seltzer



min R(tree, {(x,, yl-)}l-) where

tree

n

1
R(tree,{(x,-, y,-)},-) = ;Z 1[tree - + C (# leaves 1n tree)
=1

Prior offenses > 3

>\

Age< 26 Predict Arrest

/ %s
no
Prior offenses > 1

Predict No Arrest \%s
no ;
Predict Arrest

Any juvenile crimes

' N\

Predict No Arrest Predict Arrest

l:

\ J )
f f

Misclassification error ~ Sparsity

== An example of an optimal tree on the Broward
County Florida re-arrest data



Dynamic programming / Branch and Bound

Start with the full dataset and a naive label .':. 0



Dynamic programming / Branch and Bound

Start with the full dataset and a naive label .':. O A
L)
e . 0%, .o: o° 0%
Split it into subsets using each feature .‘.‘. o 0e®. .° A




Dynamic programming / Branch and Bound

Start with the full dataset and a naive label

Split it into subsets using each feature

Keep splitting (if permitted)

Can’t
split
anymore




Dynamic programming / Branch and Bound

Start with the full dataset and a naive label

Split it into subsets using each feature

Keep splitting (if permitted)

Consolidate any duplication found.

Can’t
split
anymore

Identical

subproblems



Dynamic programming / Branch and Bound




Dynamic programming / Branch and Bound

The solution to each
subproblem yields the best
feature to split on.




Dynamic programming / Branch and Bound

The solution to each
subproblem yields the best
feature to split on.

The optimal solution is found after all

subproblems are “completed” /

Some subproblems can be proven -

to yield non-optimal solutions .0:0. o



Dynamic programming / Branch and Bound

Analytical Bounds Reduce the Search Space

Theorems show that some partial trees can never be extended to form optimal trees.



Dynamic programming / Branch and Bound

Analytical Bounds Reduce the Search Space

Theorems show that some partial trees can never be extended to form optimal trees.



Dynamic programming / Branch and Bound

Analytical Bounds Reduce the Search Space

Theorems show that some partial trees can never be extended to form optimal trees.



rain?

A
construction? rush hout?
Y\ Y / N

traffic 79 29 no traffic

- loss =15
l()ssleafl =8 leaf 4

R(tree) = 1y loss(leaf) + C (# leaves)
n leaf
-1 Y. loss(leaf) +l Y. loss(leaf) + C (# leaves)
n fixed leaves unfixed leaves
> % Y. loss(leaf) + 0 + C (# leaves) =: b(tree,.y)

fixed leaves



rain?

A
construction? rush hout?
Y\ Y / N

traffic 79 29 no traffic

- loss =15
1ossleaf1 — 8 leaf4

R(tree)

|V

b(treeﬁxed)



Hierarchical Objective Lower Bound
rain?

T A
construction? rush hout?
LN v/

traffic no traffic

_ loss =15
lossleafl =8 leaf 4

R(tree) > b(trees,.q)

: : 1
Say my current best is a tree with loss Rbestsofafg .12+ C(3)

'“%?b(treeﬁxed) < R(tree)

i

“== This tree, and any of its children, will never be as good as current best.



rain?

A
construction? rush hout?
Y\ Y / N

traffic no traffic

_ loss =15
10551eaf1 =8 leaf 4

R(tree) > b(trees,.q)

-

Hierarchical Objective Lower Bound

It Rbestsofar< b(treeﬁxed) < R(tree)

then this tree, and its children, are all suboptimal

~

_/




Hierarchical Objective Lower Bound with Lookahead

rain?

A
construction? rush hout?
Y\ Y / N

traffic no traffic

_ 108Sjeqpa = 15
0SS = 8 leaf 4

C
X C
R(tree) = b(trees,.q) x

b(treepyeq) < Rpesisorar< b(trees,.q) + C < R (our tree with at least one child)

When we add even one child to our tree, it will be worse than current best.



rain?

A
construction? rush hout?
Y\ Y / N

traffic no traffic

_ loss =15
lc)ssleaf1 =8 leaf 4

Hierarchical Objective Lower Bound with Lookahead

If Rbestsofar< b(treeﬁxed) +C then

all its child trees are suboptimal.




YN

construction?
N

traffic

no traffic

p

\

Leaf Bound

Max # leaves of any optimal child tree

< # leaves(tree) +

. b(tree)]

[Rbestsofa

C |




rain?

YN

construction? rush hour?
Y\ Y / N
traffic no traffic

K16 T A3 T Xg3 T X71 T X3
[ Yie= Y1 and yg3 = y7; = yp3= -1

s ' ~

Equivalence Points Bound

Equivalent points with differing labels cannot all be classified correctly.
The minority in each equivalence group must be misclassified.

o J




rain?

LS

construction? rush hour?
Y\ Y / N
traffic no traffic

Incremental Progress Bound(s)

Each split must provide a reduction in loss of at least C.




Now for the computational speedups



Represent each subproblem by its contents.

rain & construction ram?

[1000010001001110000. ......................... 0]

rain & no construction Y

[0110001000000000110. .......................... 1] A

no rain & rush hour & construction

[0001000100000001000........................... 0] construction? rush hour?

no rain & rush hour & no construction & Friday

[0000100000000000001........................... 0] N M
no rain & rush hour & no construction & no Friday

[0000000010000000000. ... 0] traffic 29 construction? no traffic
no rain & no rush hour

[0000000000011000000..........cceuveeuneeennn.. 0] m

Bitvector representation makes computation fast. traffic ;rid%

no traffic 79



Permutation map: Discover identical trees already evaluated

rain & construction

rain & no construction

no rain & rush hour & construction

no rain & rush hour & no construction & Friday
no rain & rush hour & no construction & no Friday

no rain & no rush hour

rain?
A
Construction? rush hour?
N N

traffic  no traffic construction? no traffic

2N

traffic Friday?

LN

no traffic  traffic



GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

Dynamic programming
Strong analytical bounds

Representation of each subproblem

Fast bit-vector computation _- Sp eed :

Consolidation of repeated subproblems

o
|

Permutation map |



GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

R(tree, data) = loss(FP, FN) + C (# leaves)

* Can optimize any loss function monotonically increasing in FP and FN (Balanced
accuracy, weighted accuracy, F-1, precision, ...)
* Can optimize rank statistics (AUC and partial area under the ROC convex hull)

Accuracy Balanced accuracy AUC convex hull
priors > 3 priors > 3 juvenile crimes = 0
/\ N N
age < 26 1438/7 age < 26 1438/736 671/272 priors =0
/\ /\ TN
5/2043  juvenile crimes =0 043 priors: 2-3 age < 26 age <23
N
//p>ors 2-3 age ﬁ& priors > 3 priors = 1 349{}3“1
N N NN

455/692  212/119 288/517 296/251 536/1030 854/547 388/187 180/216



GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

R(tree, data) = loss(FP, FN) + C (# leaves)

* Can optimize any loss function monotonically increasing in FP and FN (Balanced
accuracy, weighted accuracy, F-1, precision, ...)
» Can optimize rank statistics (AUC and partial area under the ROC convex hull)

Main experimental results:
- Similar classification error to black box methods.
- For custom losses, much better loss values than greedy decision trees.
- Sparser than all heuristic methods
- Orders of magnitude faster than the next best method.



Scalabilit
y Time vs Number of Features

fico
400 Optimal but ( )
ptimal bu
not scalable cart
80 - ) di85
_ \ v gosdt
2 60+ . . osdt
g «  pygosdt
| v
40 N Scalable Scalable but
g + not optimal
20 - Optimal
Improvements in ik st / /
orders of magnitude 0] ee——tves v v » v v w ¥ § &
0 25 50 75 100 125 150

, . Number of Features
Note: BinOCT too slow to include.



Scalability

100

80 1

60 1

Time

201

Improvements in

orders of magnitude 0-
0 50 100 150

Note: BinOCT too slow to include.

Time vs Number of Features

40 -

(compas)
Optimal but ' cart
not scalable di85
v gosdt
X + osdt
~  pygosdt
Scalable Scalable but
+ not optimal
i Optimal
2 A A .
= /

v
Mvvvvvvvv" v

Number of Features

200



Flexibility to use different objectives

Some trees from FourClass

f1 <100 f1 <50 f1 <100
Fal}e/\’&ue Falje/\’Que Fal}e/\’&ue
f1 <150 45/309 f1 <150 0/144 f1 <150 45/309
fa < 150 f2 < 100 fa < 150 f2 < 100 f2 < 150 92/100
1/38 103/1 37/59 55/41 1/38 103/1 f, < 150 f1 < 100 1/38 103/1

0 i "N il N

40/34 17/105 55/41 f, < 50

P

25/38 0/47
a: Accuracy b: AUC convex hull c: pAUC convex hull



Summary

Modern decision tree methods are not your old CART.

Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, Margo Seltzer
Generalized and Scalable Optimal Sparse Decision Trees. ICML, 2020.

Code: https://github.com/Jimmy-Lin/GeneralizedOptimalSparseDecisionTrees

- Thanks!

R s oy

GOSDT


https://arxiv.org/abs/2006.08690
https://github.com/Jimmy-Lin/GeneralizedOptimalSparseDecisionTrees

